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Abstract
The performance of speech recognition systems is adversely af-
fected by mismatch in training and testing environmental con-
ditions. In addition to test data from noisy environments, there
are scenarios where the training data itself is noisy. Speech en-
hancement techniques which solely focus on finding a clean
speech estimate from the noisy signal are not effective here.
Model adaptation techniques may also be ineffective due to
the dynamic nature of the environment. In this paper, we pro-
pose a method for mismatch compensation between training
and testing environments using the ”average eigenspace” ap-
proach when the mismatch is non-stationary. There is no need
for explicit adaptation data as the method works on incoming
test data to find the compensatory transform. This method is
different from traditional signal-noise subspace filtering tech-
niques where the dimensionality of the clean signal space is
assumed to be less than the noise space and noise affects all
dimensions to the same extent. We evaluate this approach on
two corpora which are collected from real car environments:
CU-Move and UTDrive. Using Sphinx, a relative reduction of
40-50% is achieved in WER compared to the baseline system.
The method also results in a reduction in the dimensionality of
the feature vectors allowing for a more compact set of acoustic
models in the phoneme space.
Index Terms: speech recognition, feature adaptation, eigenvec-
tor, simultaneous diagonalization

1. Introduction
The performance of Automatic Speech Recognition (ASR) sys-
tems suffers dramatically when there is a mismatch in training
and test data conditions. This mismatch can be due to many rea-
sons including changes in background noise, changes in training
and test recording conditions (different microphone, channel ef-
fects) which result in convolutive mismatch, changes in speaker
accents (native/non-native speakers) and speaker stress levels,
etc. Further, in real time car environments which require hands-
free speech recognition, the test data conditions change at a rel-
atively higher rate with changes in speed, accompanying traffic
and car window positions (rolled up or down) and other factors,
so the test environment is inherently non-stationary. This paper
focuses on the problem of reducing the mismatch between train
and test environments and data conditions where this mismatch
is non-stationary.
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Considerable research has been conducted on the problem
of mismatch compensation for speech recognition. Some of
these schemes require the presence of stereo data (simultane-
ous recording from both environments) which is not available
in most real scenarios. Other approaches do not mandate the
availability of stereo data, but they require some information
about the environments such as a model or knowledge of en-
vironmental statistics. These approaches can be classified un-
der two broad categories: model based methods and feature
based methods. Model based approaches try to transform the
phoneme models to reduce the mismatch. Maximum likelihood
eigenspace mapping [1] and maximum likelihood linear regres-
sion (MLLR) [2] have been considered for environment mis-
match compensation.

Feature based approaches aim to find a transformation in
the feature space to match an already trained model. Spec-
tral subtraction (SS) along with many variants has been ap-
plied to this problem. For example, [3] applies non-linear SS
to speech recognition in noisy car environment. In [4], cep-
stral mean normalization (CMN) and CDCN are applied to
noisy car environments. All the above methods either require
prior adaptation data from the test environment or process test
data independent of the training environment to remove chan-
nel and noise related effects. Some methods exist in the liter-
ature which do not need separate adaptation data from the test
environment and work on the test utterance directly. Feature
transformation based on maximum likelihood framework cal-
culates the additive bias vectors per test utterance which can
be applied to incoming feature vector for mismatch compensa-
tion [5]. Subspace filtering based approaches ([6]) try to de-
compose the noisy signal in the time domain into orthogonal
speech and noise subspaces assuming a low-rank linear model
for speech and an uncorrelated additive noise. In case of corre-
lated noise, noise pre-whitening transform is applied before the
decomposition and a de-whitening transform is applied after it,
but this also affects the original speech signal. This method
focuses on finding the clean estimate of the speech signal and
does not take into consideration the training environment statis-
tics for mismatch reduction. Extensive research has also been
focused on improving interactive systems for in-vehicle appli-
cations ([7], [8]). Noise modeling in the car environment based
on environmental sniffing has been proposed by Akbacak and
Hansen [9], and constrained switched adaptive beamforming for
robust enhancement and recognition in car environment has also
shown great improvements [10].

In this paper we propose a method based on the average
eigenspace of speech and noise to reduce the mismatch between
training and test environment. The remainder of the paper is or-
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ganized as follows: Section 2 describes the concept of average
eigenspace, Section 3 describes the application to current prob-
lem, Section 4 compares training and test environments through
various statistics (other than WER obtained on the recognizer).
Section 5 describes the baseline system and the results obtained.
Section 6 discusses directions for future work and section 7 con-
cludes the paper.

2. Average Eigenspace
We know that a setR = {Rk|k = 1, 2 . . . K} of real symmet-
ric matrices can be simultaneously diagonalized by a unitary
transform if the matrices commute. Under this condition each
matrixRk in the set is similar to a diagonal matrix Λk:

Rk = UΛkU
T
, k = 1, 2 . . . K (1)

where U
T is the unitary transform which diagonalizes all the

matrices in the set. If the matrices do not commute, the trans-
form needed to diagonalize the set is not unitary. However, we
can attempt to obtain a unitary transform such that it makes the
off-diagonal elements extremely small. One possible approach
may be the minimization of the following criterion function
withU being a unitary matrix:

f(U) =
∑

k=1,2...K

∑

1≤i,j≤N
i�=j

∣∣∣
(
U

T
RkU

)
ij

∣∣∣
2

(2)

where
()

ij
denotes the (i, j) element of the matrix. The ex-

tended Jacobi technique for simultaneous diagonalization opti-
mizes this criteria by iteratively applying plane rotations to all
the matrices in the set R and minimizing the criteria for these
rotations. The final transform is then calculated as the product
of these plane rotations. A closed form expression for the op-
timal Jacobian angles for plane rotation is given by [11]. This
transformation process is called approximate simultaneous di-
agonalization of the setR, andU defines as we may call it - the
average eigenspace of the matrix set R. Every matrix Rk in
the set is now similar to a matrixΛ

′

k which is the most diagonal
in a quadratic sense :

Rk = UΛ
′

kU
T
, k = 1, 2 . . . K (3)

3. Average Eigenspace for Speech and Noise
If Rk in the above section are the covariance matrices of ran-
dom vectors rk for all k = 1, 2, . . . K, this transformation re-
sults in almost decorrelating the elements of each random vec-
tor. LetKx and Kn denote the covariance matrix estimates of
corrupted speech and noise respectively which are obtained as
follows (let x and n be the corrupted speech and noise random
vector respectively in the feature space, each of length N ):

Kx =
1

Nx

Nx∑

i=1

xix
T
i − x̄x̄

T

Kn =
1

Nn

Nn∑

i=1

nin
T
i − n̄n̄

T

(4)

where Nx and Nn are the total number of observations of cor-
rupted speech and noise respectively, and x̄ = 1

Nx

∑Nx

i=1
xi and

n̄ = 1

Nn

∑Nn

i=1
ni. In our experiments, we use mel frequency

cepstral coefficients (MFCC) as feature vectors. The joint di-
agonalization criterion for these two covariance matrices can be

optimized using the extended Jacobian technique and we obtain
an average eigenspace of speech and noise.

Kx = UΛ
′

xU
T

Kn = UΛ
′

nU
T

(5)

We call the columns of the unitary transformation matrixU the
average eigenvectors. Off-diagonal elements ofΛ′

x andΛ
′

n are
very small (compared to the diagonal elements). The diagonal
elements of these matrices give us the energies or variances for
corrupted speech and noise in the feature space along these av-
erage eigendirections.

3.1. Average eigenspace for training environment

The covariance matrices of speech and noise (Ktr
x andK

tr
n ) are

estimated from the training data using a voice activity detection
(VAD) algorithm. Approximate joint diagonalization of these
matrices gives the average eigenspace for the training environ-
ment (Utr). We compare the variance of speech and noise along
each of the average eigendirections (we will call these direc-
tions from now on) and the information is retained only along
those directions which have a high ratio of speech to noise vari-
ance. IfUtr

p is the matrix (of size N × P tr) constructed from
the vectors corresponding to these directions (P tr such direc-
tions), this is achieved by applying the following transform to
the signal in the feature space (columns ofUtr

p span a subspace
of the vector space spanned by columns ofUtr):

xp = U
trT

p x (6)

Note that this process is done for static, delta and delta-delta
cepstrum separately. Covariance matrices of these feature
streams are estimated and the average eigenspace is calcu-
lated for each separately. If the selected number of directions
for static, delta and delta-delta cepstrum are P tr

s , P tr
d , P tr

dd re-
spectively, then we obtain a complete feature vector of length
P tr

s + P tr
d + P tr

dd (less than original feature vector length 3N ).
The phoneme models are trained using these new feature vec-
tors.

3.2. Average eigenspace for test environment

This approach is further applied during testing phase. Covari-
ance matrices for speech and noise (Kts

x andK
ts
n ) are estimated

from the test data and their average eigenspace is computed
(Uts). A transformation matrix is formed in which directions
(columns of U

ts) along which we have high ratio of speech
to noise variance are retained (P ts such directions) and the re-
maining columns are replaced with an all zero vectors. Let us
call this matrixU

ts
p (having sizeN×N withN−P ts columns

being zero). Original feature vectors are transformed using this
matrix and we obtain a new feature vector x′

p of sizeN×1with
N − P ts entries as zero,

x
′

p = U
tsT

p x (7)

We need to transfer the information present in the feature vec-
tor x′

p to the restricted eigenspace of the training environment
(restricted to selected directions,Utr

p ). For this, we transfer the
information in x

′

p back to the MFCC space. The MFCC vec-
tor obtained is then transformed to the restricted space of the
training environment. The final feature vector is given by,

xp = U
trT

p U
ts
x
′

p

=
(
U

trT

p U
ts
U

tsT

p

)
x

(8)
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Figure 1: Long term average noise spectra from UTDrive and
CU-Move, obtained using 40 sec. duration of data (log magni-
tude (in dB) vs frequency (in Hz))

Again, this process is performed individually for static, delta
and delta-delta cepstrum vectors. The final complete feature
vector obtained has length P tr

s + P tr
d + P tr

dd (same as that in
training).

4. Train and Test Environments
In our evaluations, we use two corpora collected from real car
environments: UTDrive [12] and CU-Move [13]. The speech
collected from a far field microphone is used in the experiments
for both corpora. The acoustic conditions in both cars and mi-
crophones are different in the two databases. Here, we focus on
quantifying the mismatch between these two environments.

To illustrate the distribution of noise across frequencies, we
average the magnitude spectra of noise/silence frames over a
duration of about 40 seconds. Fig. 1 shows the long term aver-
age noise spectra for both environments. Background noise in
CU-Move is spread across a wider frequency range while noise
in UTDrive drops significantly in the higher frequency range.
It can be seen that average noise power in CU-Move is higher
than UTDrive across the complete frequency band. There is a
difference of 2-7 dB in the noise levels in the frequency range
0-4000 Hz.

Speech from close-talk microphone is also available as part
of the UTDrive corpus. We try to estimate the channel mis-
match between speech from the close-talk and far-field micro-
phones. Long term average of the log spectra can be used to
characterize the channel. Average log spectra of both channels
are calculated and their difference is found (far-field log-spectra
is subtracted from the close-talk log-spectra), which character-
izes the channel mismatch, with the response shown in Fig. 2.
This resembles a high pass filter and also has two sharp peaks
in the spectrum. Far-field microphone speech from UTDrive is
processed with this filter. This processing further accentuates
the mismatch between training and test environments. Recog-
nition experiments are performed with this data to test the ef-
fectiveness of the approach.

The Car environment presents additional challenges in the
sense that background noise is non-stationary. There are many
events that can happen which change the acoustic environment
such as rolling up/down the windows, indicator beeps, etc. This
varies the noise shape across the frequency range over time. The
difference in environments is reflected in the word error rates,
when training is done with one corpus and testing performed
with the other corpus.

0 2000 4000 6000 8000
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Figure 2: Channel response applied to test data to incorporate
convolutive mismatch in environments(log magnitude (in dB) vs
frequency (in Hz))

5. Recognition Experiments
In this section, we describe the results of large vocabulary con-
tinuous speech recognition (LV-CSR) experiments. The average
eigenspace approach is used for preprocessing the speech in the
feature space and recognizer is trained on these new features.
Similarly during testing, the features are preprocessed using the
average eigenspace transform for every frame before submitting
to the recognizer.

5.1. Baseline

We use a speaker-independent LVCSR system based on CMU
Sphinx for evaluating this approach. MFCCs in combination
with their first and second order derivatives are used as the fea-
ture vector (39 dimensional feature vector). Acoustic modeling
is done for a set of 42 phonemes. Each of the 127 phoneme
states is modeled using a mixture of 8 Gaussian distributions
without any tying (context-independent monophone models are
used). A trigram language model for a 1k-word vocabulary is
used during decoding for all experiments with CU-Move and
UTDrive corpora.

5.2. Experiments and Results

We compute estimates of the covariance matrices for speech
and noise as given by Eq. 4 for the training data using MFCCs
as the feature vector. Average eigenspace is computed using
extended Jacobian technique with plane rotation angles given
by [11] with the minimizing criterion given by Eq. 2, and fa-
vorable directions (which have large speech information and
low noise) are chosen. Training feature vectors are then trans-
formed (Eq. 6) and the model trained using these features. In
our experiments, CU-Move is used as the training corpus with a
23-dimensional feature vector after applying this transform (di-
mensionality is reduced from the original 39-D MFCC). During
test, covariance statistics are collected again from the test data
and the transform of Eq. 8 is applied to feature vectors before
submission to the recognizer.

In all experiments, we collect the covariance statistics on a
per utterance basis to estimate the average eigenspace. This
means, a single transform is applied to the whole utterance
(4-15 words per utterance). For the next utterance, this pro-
cess of collecting covariance statistics, estimating the average
eigenspace and finding the transform is repeated. It is also pos-
sible to estimate the average eigenspace more often (per word
or per Nx frames), in which case the noise covariance statistics
will be collected from the past Nn frames (to adapt to the dy-
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Train with Test on Baseline (using
39-D MFCC)

CMN+SS
(using 39-D
MFCC)

Average
Eigenspace
(23-D features)

CU-Move 11.4% 6% 4.2%
CU-Move UTDrive 18.8% 19.5% 10.2%

UTDrive CH1 38.3% 36.1% 24.4%
1 UTDrive speech processed with filter response shown in Fig. 2

Table 1: WER for baseline, SS+CMN and average eigenspace methods

namic nature of noise) and speech covariance statistics will be
collected from the Nx frames for which the transform is to be
estimated. Finding the transform more often is expected to give
better results as it will give the average eigenspace, focusing on
less number of speech frames, but at the same time requiring
extensive computational resources.

Table 1 shows the results of the experiments. First, we train
the ASR model using MFCCs without any preprocessing. For
the matched environment case (train and test with CU-Move
data), we get aWER of 11.4%. Applying cepstral mean normal-
ization (CMN) and spectral subtraction reduces theWER to 6%.
Application of the average eigenspace approach yields a WER
of 4.2%. For the first mismatched case (train with CU-Move
and test on UTDrive), the model is trained with unprocessed
MFCCs producing a WER of 18.8%. Processing the speech
with CMN and spectral subtraction (both during training and
test) increases the WER in this case. The average eigenspace
approach reduces the WER relatively by almost 45%. For the
second mismatched case, where test is done on UTDrive data
processed with the filter response shown in Fig. 2, the base-
line WER is 38.3%. SS and CMN improve performance only
marginally to 36.1%. The average eigenspace approach results
in a reduction in WER to 24.4% (relative reduction of 36%).

6. Discussion
Having established the average eigenspace approach, there are
a number of ways to consider applying the method to speech.
In this paper, we focused on its application to MFCC feature
vectors. Alternative features for recognition such as Mel fre-
quency filter bank energies, PMVDR features, and others are
also possible since the impact of noise will be different in each
corresponding feature domain (additive, nonlinear, etc.).

In the experiments reported here, we estimate the aver-
age eigenspace on a per utterance basis during the test phase.
The frequency of estimation of the average eigenspace could
be explored, where we either increase the estimation rate,
or update the estimation based on an additional metric of
speech/acoustic/environment diversity over time. Increasing the
rate of average eigenspace estimation is expected to improve
performance, but at the cost of increased computational com-
plexity. This trade-off can be adjusted for speech recognition
depending on the application (e.g., near real-time for voice dia-
log applications, off-line ASR for transcript generation in spo-
ken document retrieval).

7. Conclusions
In this paper, we introduced an approach for training and test
environment mismatch compensation using the concept of aver-
age eigenspace. It is named as average eigenspace because a set
of covariance matrices are approximately diagonalized along its

principal axes. This approach is particularly effective for non-
stationary environments such as in-vehicle applications. A side
result of applying this approach is the reduction in dimensional-
ity of the phoneme state output distributions. The approach was
evaluated using two noisy car corpora - UTDrive and CU-Move.
We obtain a significant reduction in WER for both mismatched
as well as matched environmental conditions. The results sug-
gest an effective means to address environment mismatch for
robust speech recognition in time-varying vehicle conditions.
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